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Abstract 
 
Separate three-dimensional models of thermo-mechanical behavior of the solidifying shell, turbulent fluid flow in the 
liquid pool, and thermal distortion of the mold are combined to create an accurate multiphysics model of metal 
solidification at the continuum level.  The new system is applied to simulate continuous casting of steel in a 
commercial beam-blank caster with complex geometry.  A transient coupled elastic-viscoplastic model computes 
temperature and stress in a transverse slice through the mushy and solid regions of the solidifying metal.  This 
Lagrangian model features an efficient numerical procedure to integrate the constitutive equations of the delta-
ferrite and austenite phases of solidifying steel shell using a fixed-grid finite-element approach.  The Navier-Stokes 
equations are solved in the liquid pool using the standard K-ε turbulent flow model with standard wall laws at the 
mushy zone edges that define the domain boundaries.  The superheat delivered to the shell is incorporated into the 
thermal-mechanical model of the shell using a new enhanced latent heat method.  Temperature and thermal 
distortion modeling of the complete complex-shaped mold includes the tapered copper plates, water cooling slots, 
backing plates, and nonlinear contact between the different components.  Heat transfer across the interfacial gaps 
between the shell and the mold is fully coupled with the stress model to include the effect of shell shrinkage and 
gap formation on lowering the heat flux.  The model is validated by comparison with analytical solutions of 
benchmark problems of conduction with phase change, and thermal stress in an unconstrained solidifying plate.  
Finally, results from the complete system are shown to compare favorably with plant measurements of shell 
thickness. 
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Introduction 
 
Many manufacturing processes, such as continuous 
casting of steel, involve multiple coupled phenomena, 
including fluid flow, heat transfer, solidification, 
distortion, and stress generation.  As the demand for 
better computer simulations of solidification 
processes increases, there is a growing need to 
include the effects of fluid flow into thermo-
mechanical analyses of commercial processes.   
 
Some previous coupled models of these phenomena 
solve all of the equations simultaneously in the same 
computational domain, and have been restricted by 
computing power [1, 2].  Lee and coworkers [3] 
showcased multiphysics modeling by coupling a 3-D 
finite-difference model of fluid flow with a 2-D 
transient thermal-stress model to predict solidification, 
gap formation, stress, and crack formation in a beam-
blank caster.  Teskeredzic et al. [4] used a 2D 
multiphysics finite-volume method for simultaneous 
prediction of physical phenomena during a solid/liquid 

phase change.  Neither prediction was validated with 
plant measurements.  Some researchers attempted 
to decouple the thermal-fluid simulation from the 
stress analysis [5-10] but this neglects the important 
effects of shrinkage and deformation on heat transfer, 
such as that caused by increased pressure or gap 
formation between the casting and the mold [11]. 
 
In many processes, such as steel continuous casting, 
the fluid flow simulation can be reasonably decoupled 
from the thermal-stress analysis because the liquid 
pool shape can be estimated a-priori. Then, the 
mechanical influence of fluid on the solid shell can be 
modeled with hydrostatic pressure boundary 
conditions [12].  A separate simulation of fluid flow in 
a domain containing only the liquid cavity can readily 
output the “superheat flux” that delivers heat across 
the domain boundary that represents the solidification 
front, such as characterized by the liquidus 
temperature.  Recently Koric et al. [13, 14] have 
shown how “superheat flux” can be incorporated into 
a transient simulation of heat transfer phenomena in 
the mushy and solid regions by enhancing the latent 
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heat in the mushy zone without an explicit need to 
track the solidification front.  The procedure has been 
added into the commercial package ABAQUS [15] 
with a user-defined subroutine UMATHT.  This model 
system satisfies the governing equations for 
conservation of mass, momentum, and energy in the 
molten steel, the solidifying shell, and the solid mold 
using three different models and three different 
computational domains.  In the present work, this 
approach is applied to perform a realistic simulation 
of turbulent fluid flow, heat transfer, solidification, 
stress, and mold distortion of a commercial beam-
blank continuous-casting mold, shown in Figure 1. 
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Figure 1: Schematic of beam blank caster (top view) 
 
Solidifying Shell Model 
 
The solidifying steel shell is modeled as a transverse 
Lagrangian slice that moves down through the mold 
at the casting speed.  Several previous thermal-
mechanical models of continuous casting have used 
this approach [12-14,16-27]. Because the domain 
and material velocities are identical, the Lagrangian 
formulation removes the advection terms from the 
governing equations.  This is a slight over-
simplification because the mushy zone does not 
move at exactly the casting speed.  The constitutive 
equations are defined in rate form: 
 

( ):= − −σ ε ε ε    th ie     (1) 
 
where   is the fourth-order tensor of elastic 
constants assumed here to be isotropic, εth  is the 
thermal strain rate tensor calculated from 
temperatures resulting from the solution of the 
transient heat-conduction equation with solidification, 
εie  is the inelastic strain rate tensor, and ε  is the 
total linearized strain rate tensor, calculated from: 
 

( )( )1
2

Td

dt
 = ∇ + ∇  

ε u u
  

(2) 

 

where u  is the displacement vector.  Note that this 
formulation does not include the effect of the 
temperature dependence of the elastic constants on 
the stress rate.  This small-strain mechanical model 
is reasonable for casting processes. 
 
Temperature and phase-dependent enthalpy, thermal 
conductivity, thermal expansion, and elastic modulus 
[26]  were calculated for 0.071 % wt. C plain carbon 
steel.  The volume fractions of the liquid, delta, and 
austenite phases are calculated according to a 
multicomponent microsegregation model [27]. Other 
simulation conditions are listed in Table 1. 
 
Strand section size (mold top)  
Working mold length 
Total taper at flange 
Total taper at shoulder edge 
Total taper at wide face     
Total taper at narrow face   
Mold contact resistance heat  
  transfer coefficient, hmold       
Casting speed 
Mold thermal conductivity 
Steel grade 
Initial temperature (strand) 
Initial temperature (mold) 
Liquidus temperature 
Solidus temperature 
Cooling water temperature 

576 x 436 x 93 mm
660.4 mm 
2.33 mm 
-2.22 mm 
0.48 mm 
3.0 mm 
 
2500 W/m²/K 
0.889 m/min 
370 W/m•K 
0.071 % wt. C 
1523.70 ºC 
285 ºC 
1518.70 ºC 
1471.95 ºC 
34.5 ºC                   

 
Table 1: Simulation Conditions 
 
The inelastic strain includes both strain-rate 
independent plasticity and time-dependent creep.  
Creep is significant at the high temperatures of the 
solidification processes and is indistinguishable from 
plastic strain.  The following unified constitutive 
equation [28] defines inelastic strain in the solid 
austenite phase: 
 

( ) 3
2 11

1[sec ] [MPa] | | exp
[ ]

ff
ie C ie ie

Q
f f

T K
ε σ ε ε −−  = − − 

 
   (3) 

             
where Q  is an activation energy, σ  is effective (Von-
Mises) stress, 

ieε  is effective inelastic strain, T is 
temperature, and the empirical temperature- and 
composition-dependant constants are defined 
elsewhere [20,21,23].  The modified power-law model 
developed by Zhu [20] is used to simulate the delta-
ferrite phase, which exhibits significantly higher creep 
rates and lower strength than the austenite phase.  
The delta-ferrite constitutive model is used whenever 
the volume fraction of ferrite is greater than 10%.  To 
enforce negligible liquid strength in mushy and liquid 
zones before solidification takes place, an isotropic 
elastic-perfectly-plastic rate-independent constitutive 
model is used when the temperature is above the 
solidus temperature.  The yield stress is chosen small 
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enough to effectively eliminate stresses in the liquid-
mushy zones, but also large enough to avoid 
computational difficulties. 
 
The governing equations are incrementally solved 
using the finite-element method [29] in ABAQUS [15] 
using a fully implicit stepwise-coupled algorithm for 
the time integration of the governing equations 
[20,21].  The highly-nonlinear elastic-viscoplastic 
constitutive laws are integrated by solving a system 
of two ordinary differential equations defined at each 
local material point using the backward-Euler method 
with a bounded Newton-Raphson method [13] in the 
user subroutine UMAT [15].  In each time step the 
thermal problem is first solved, and then the resulting 
thermal strains are used to drive the mechanical 
problem. Global Newton-Raphson iterations continue 
until tolerances for both equation systems are 
satisfied before proceeding to the next time step. 
 
The Lagrangian shell-model domain given in Figure 
2, was discretized with 32,874 nodes and 63,466 
degrees of freedom, and required 12,409 time steps 
for the complete 45-s simulation down the mold 
length. It encompasses corresponding thin “stripe” of 
the strand section adjacent to the mold wall, which is 
wide enough to allow solidification of the expected 
shell everywhere.  This avoids expensive 
computation in the larger liquid domain with the 
thermo-mechanical model.  More importantly, the 
enclosed space which represents the internal liquid 
cavity is able to shrink to properly model liquid 
feeding of the real continuous casting process.   
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Figure 2: Shell model domain with thermo-
mechanical boundary conditions 
 
This 2-D transient model also comprises a 3-D 
solution at steady state. The slice begins at the top of 
the liquid steel pool, where the uniform initial 
conditions are the pouring temperature, zero 
displacement, zero strain, and zero stress.  The 2-D 
assumption is valid for the thermal analysis, owing to 

negligible axial conduction, as shown with the large 
Peclet number 5Pe 10cv L α= ≈ , where cv  is the 
casting speed, L  is mold length, and α  is thermal 
diffusivity [30].  The appropriate two-dimensional 
mechanical state is that of generalized plane strain 
with negligible out-of-plane bending, which has been 
shown to accurately reproduce the complete 3-D 
stress state [23] in straight-walled molds. 
 
Fluid Flow Model 
 
A 3-D fluid flow model of the liquid pool of molten 
steel solves the Navier-Stokes equations for the time-
averaged velocity and pressure distributions in an 
Eulerian domain.  The standard k-ε model is used to 
model turbulence, which is significant for the low 
kinematic viscosity of molten steel, of 0.006 m/s2 and 
the high velocities, which produce a Re number of 
54,000 at the domain inlet.  This requires the solution 
of two additional transport equations [31].   
 
Buoyancy forces are negligible relative to the flow 
inertia, as indicated by Gr/Re2~10-2-10-4, where Gr is 
the Grashoff number and Re is the Reynolds number.  
The velocity and temperature fields are thus 
decoupled, as the flow affects the temperature but 
the temperature does not affect the flow.   
 
The governing equations are solved using the finite-
volume method with the SIMPLE method and first-
order upwinding in FLUENT [32], as explained 
elsewhere [33] to give the pressure, velocity, and 
temperature fields at each cell in the computational 
domain, and the heat flux at the domain boundary 
surfaces. 
 
The shape of the domain is specified by extracting 
the position of the solidification front (liquidus 
temperature) from the solidifying shell model, and the 
symmetry planes of the mold.  Fluid enters the liquid 
pool through a funnel that catches the gravity-driven 
stream from the tundish bottom.  This is modeled with 
fixed  v=1.854m/s, K=0.464m2/s2 , and ε=2.077m2/s3  
on the 25.5mm diameter inlet boundary plane on the 
top surface that represents the pouring funnel outlet.   
 
Standard wall functions are used to model the steep 
velocity gradients found near the shell-interface 
which comprises the domain boundaries of this 
turbulent problem.  Symmetry planes are treated with 
the appropriate symmetry boundary conditions.  
Boundaries at the shell-liquid interface have a vertical 
downward velocity fixed at the casting speed.  This 
effect of molten steel consumed as shell growth is 
incorporated as mass and momentum sinks [34,35] in 
a user-defined function (UDF) in FLUENT [32]. 
 
Figure 3 shows the velocity and temperature 
distributions on the center planes and top plane (10-
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mm below the liquid surface) calculated with the 3D 
fluid flow – heat transfer simulation of 606,720 
hexahedral cells.   
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Figure 3: Velocity and Temperature Distributions in 
the Liquid Pool 
 
Mold Model  
 
In addition to supporting the shell to determine its 
shape, the copper mold in the continuous casting 
process extracts heat from the molten steel by means 
of cooling water flowing through circular channels 
and rectangular slots.  The mold assembly consists 
of two wide faces, two narrow faces, and their 
respective water boxes.  The steel water boxes serve 
to circulate the water in the mold and also increase 
the rigidity of the assembly to reduce the effect of the 
thermal distortion of the mold when it heats up to 
operating temperatures.  In this work, a three-
dimensional finite-element model of one symmetric 
fourth of the mold assembly was constructed to 
capture the effects of mold distortion and variable 
mold surface temperature on the solidifying steel 
shell.  The model mold and water box geometries 
include the curvature and applied taper of the hot 
faces, water channels, and bolt holes.  The taper is 
applied to the mold pieces to accommodate the 
solidification shrinkage of the solid steel. 
 
The mesh consisted of 263,879 nodes and 1,077,166 
tetrahedron, wedge, and hexahedron elements.  The 
standard equilibrium equations, small-strain-

displacement equations, and linear-elastic 
constitutive equations for thermal stress analysis 
were solved in this model using ABAQUS [15].  The 
effect of creep in the copper was neglected owing to 
its small effect on mold distortion [36].  Appropriate 
partial contact between the two mold pieces and two 
backing plates was enforced manually by iteratively 
applying constraint equations on contacting nodes.  
The mold bolts and tie rods were simulated using 
linear truss elements and were appropriately pre-
stressed.  The heat flux applied to the hot faces of 
the mold was extracted from the shell-mold surface in 
the shell model. 
 
The calculated temperature and distortion results are 
presented in Figure 4.  In addition to providing insight 
into thermo-mechanical behavior of the mold, this 
model provides temperature and displacement 
boundary conditions to the shell model.  More detail 
of this model can be found elsewhere [26].   

 
Figure 4: Temperature and distorted shape of mold 
(20x magnified distortion)  
 
Fluid / Shell Interface Treatment   
 
Results from the fluid flow model of the liquid domain 
affect the solidifying shell model by the heat flux 
crossing the boundary, which represents the 
solidification front, or liquidus temperature.  This 
“superheat flux” superq  can be incorporated into a 
fixed-grid simulation of heat transfer phenomena in 
the mushy and solid regions by enhancing the latent 
heat [14] used in the shell model.  This new method 
enables accurate uncoupling of complex heat-
transfer phenomena into separate simulations of the 
fluid flow region and the mushy-solid region [14].   
Starting with the Stefan interface condition [30], the 
additional latent heat Δ fH  to account for superheat 
flux delivered from the liquid pool is calculated from:  
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( ),super
f

solid interface

q t
H

vρ
Δ =

x      (4) 

 
where 

solidρ  is the solid density, x is distance around 
the perimeter, and t is time below the meniscus.  The 
latent heat enhancement is added to the original 
latent heat and enthalpy in the transient heat 
conduction equation via a UMATHT user subroutine 
in ABAQUS [15].  In the transient shell model, the 
interface speed 

interfacev  can be estimated from the 
local cooling rate T and temperature gradient T∇

 at every time and material point near the solidification 
front.  
 

1
interface

T T
v

T t T

Δ= =
∇ Δ ∇


    (5) 

 
This method sometimes produces excessive and 
fluctuating latent heat values when temperature 
increments TΔ are driven to be very small by the 
global Newton-Raphson iterative solution procedures, 
particularly at early simulation times and when 
superheat flux is high.  When the maximum latent 
heat enhancement reaches 40 times the initial value 
of the latent heat, the interfacev  estimate switches to an 
analytical solution based on the classical 1-D 
solidified-metal-shell control solidification solution [30] 
with the addition of superheat:  
  

( ) ( ) ( )2 ,
exp erf( ) 1

super
p s liq surf f

s

q t
c T T H

t

φ φ φ π
ρ α φ

 
 

− = + 
  
 

x   (6) 

 
The above equation is solved for φ  for every time 
increment and velocity is calculated as: 
 

( ) φ α=interface sv t t      (7) 

 
This method gives an accurate and smooth estimate 
of the interface velocity, and was shown to perform 
well in both one- and two-dimensional solidification 
problems [14]. 
 
The superheat flux ( ),superq zp  that is calculated at 
the boundaries of the 3-D Eulerian fluid-flow model 
must be converted to a function of space and time for 
the Lagrangian shell model ( ),superq tx .  The 
perimeter coordinate ( ),x yp  around the surface of 
the flow model is chosen to be the liquidus isotherm.  
The surface coordinates and the superheat data are 
stored in arrays of perimeterN  points around the 
perimeter for each of the zN  layers of nodes below 
the meniscus.  At each given time and material point 
in the shell model within the mushy zone, the axial 
coordinate is found simply from cz v t= ⋅ .  The array 
coordinates are searched to find the indices i  and 

1i +  (1 perimeteri N≤ ≤ ) and j  and 1j +  (1 zj N≤ ≤ ) 
which bound the material point in the Lagrangian 
shell model.  The corresponding superheat fluxes 

( ),superq i j , ( )1,superq i j+ , ( ), 1superq i j + , and 
( )1, 1superq i j+ +  are then bilinearly interpolated 

using standard interpolation functions for a 4-node 
quadrilateral finite element, [29], with element-based 
coordinates ( ) ( )12 1i i ip p p pξ += − − −  in the 
perimeter direction and ( ) ( )12 1j j jz z z zη += − − −  
in the axial direction, where p  here is taken as x  on 
the wideface and y  on the narrow face.  
 
Figure 5 shows a 3-D view of the superheat flux 
distribution on the shell interface calculated from the 
CFD turbulent flow model.  The fluid flow causes 
uneven distribution of superheat fluxes that are 
greatest midway down the inner shoulder, and least 
in the flange and center of the wide face.  These 
variations in turn cause local shell thinning and 
temperature changes, which affect the thermal stress 
behaviour.   

 
 
Figure 5: 3D view of the superheat flux distribution on 
the shell interface 
 
The effect of the ferrostatic pressure in the liquid pool 
is treated in the shell model as a linearly-increasing 
distributed load that pushes the solidifying steel shell 
towards the mold.  This condition was treated using 
the ABAQUS user subroutine DLOAD [15]. 
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Shell/Mold Interface Treatment  
 
Two-way thermo-mechanical coupling between the 
shell and mold is needed because the stress analysis 
depends on temperature via thermal strains and 
material properties, and the heat conducted between 
the mold and steel strand depends strongly on 
distance between the separated surfaces calculated 
from the mechanical solution.  Heat transfer across 
the interfacial gap between the shell and the mold 
wall surfaces is defined with a resistor model that 
depends on the thickness of gap calculated by the 
stress model.  The total heat transfer gapq  occurs 
along two parallel paths, due to radiation, radh , and 
conduction, condh , as follows:  
  ( )( )/gap rad cond shell moldq k T n h h T T= − ∂ ∂ = − + −   (8) 

  where n  is in the direction normal to the surface.  
The radiation heat transfer coefficient is calculated 
across the transparent liquid portion of the mold slag 
layer: 
 

( )( )2 2

1 1 1

σ

ε ε

= + +
+ −

SB
rad shell mold shell mold

shell mold

h T T T T   (9) 

  where 8 2 45.6704 10 Wm Kσ − − −= ⋅SB  is the Stefan-
Boltzmann constant, 0.8ε ε= =shell mold  are the 
emissivities of the shell and mold surface, and shellT  
and moldT  are their current temperatures, respectively. 
The conduction heat transfer coefficient depends on 
four resistances connected in series: 
 

( )1 1 1gap slag slag

cond mold air slag shell

d d d

h h k k h

−
= + + +   (10) 

 
 (15) 

The first resistance, 1 moldh , is the contact resistance 
between mold wall surface and the solidified mold 
slag film. The contact heat transfer coefficient moldh  is 
chosen to be 2500 W/m2 [24].  The second 
resistance is associated with conduction across the 
air gap assuming airk  = 0.06 W/m·K.  The thickness 
of the air gap is determined from the results of the 
mechanical contact analysis.  An artificial constant 
slag film thickness, slagd  = 0.1 mm, is adopted in this 
work to prevent non-physical behavior associated 
with very small gaps [24].  The third resistance is due 
to conduction through the slag film assuming slagk  = 
1.0 W/m·K.  The final term is the contact resistance 
between the slag film and the strand, where the shell 
contact heat transfer coefficient shellh  depends greatly 
on temperature.  This shell-slag contact heat-transfer 
coefficient decreases greatly as the shell surface 
temperature drops below the solidification 
temperature of the mold slag [25].  These equations 

were implemented via the user-defined subroutine 
GAPCON into ABAQUS [15]. 
The size of the gap is determined through the 
“softened” exponential contact algorithm built into 
ABAQUS/Standard [15], knowing the position of the 
mold wall and shell surfaces xmold  and xshell : 
 

( ) ( ) ( ), ,gap shell moldd t t x t= −x x x    (11) 

 
The first iteration of the shell model used the nominal 
(undistorted) shape of the mold. For the second 
iteration of the shell model, the results on the hotface 
boundary of the 3-D Eulerian mold distortion model 
were post-processed to create a database of surface 
temperature, ( , )moldT zp , and surface position, 

( , )mold zx p , for points on the transverse perimeter of 
the hot face p  and distance down the mold, z.  The 
same process used to interpolate the superheat flux 
data described in Section 6 was used to interpolate 
the moldT

 
and moldx  data into ( , )moldT tx

 
and 

( , )mold tx x  on the mold surfaces for Eqs. 8 and 9 of 
the shell model as a function of time below the 
meniscus, ct z v= .  A time-varying displacement 
was applied to each point on the hot face to re-create 
the distorted shape of the mold that the Lagrangian 
shell domain encounters as it moves through the 
mold, using the ABAQUS user subroutine DISP [15]. 
 
Validation of the Numerical Models 
 
The thermo-mechanical solidification model used in 
this work was validated by comparison with the 
classic semi-analytical solution of thermal stresses in 
an unconstrained solidifying plate [37].  A one-
dimensional model of this test casting can produce 
the complete 3-D stress and strain state if the 
condition of generalized plane strain is imposed in 
both the width (y) and length (z) directions [21].   
The domain adopted for this problem moves with the 
strand in a Lagrangian frame of reference like the full 
beam-blank model. The domain consists of a thin 
slice through the plate thickness using 2-D 4-node 
generalized plane strain elements (in the axial z 
direction) implemented in ABAQUS. The second 
generalized plane strain condition was imposed in the 
y-direction (parallel to the surface) by coupling the 
displacements of all nodes along the bottom edge of 
the slice domain. A fixed temperature was imposed at 
the left boundary, with other boundaries insulated.   
 
The material in this problem has elastic-perfectly 
plastic constitutive behavior. The yield stress drops 
linearly with temperature from 20 MPa at 1000 ºC to 
zero at the solidus temperature 1494.4 ºC, which was 
approximated by  0.03 MPa at the solidus 
temperature.  A very narrow mushy region, 0.1 ºC, is 
used to approximate the single melting temperature 
assumed in the analytical solution.  The temperature 
and stress distributions across the solidifying shell of 
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the numerical method match closely with the 
analytical solution. More details about this model 
validation can be found elsewhere [13] including 
comparisons with other less-efficient integration 
methods and a convergence study.   
The method for modeling superheat by enhancing 
latent heat [14] was also tested on the same slice 
domain and compared with a 1D analytical solution 
for conduction with phase change [30].  The 
superheat flux is best calculated with simultaneous 
modeling of fluid flow. Instead initial temperature is 
raised by 50 ºC, thus providing a superheat flux 
driven by the temperature difference between Tinit 
and Tliq, assuming stagnant liquid. Since the entire 
problem including the liquid pool starting from the 
initial temperature of Tinit can be solved for this 
simplified test using the conventional solution method 
built into ABAQUS, the heat flux is extracted from 
that simulation as a function of time at the moving 
interface front (i.e. for the points that are at 
temperature Tliq ). It represents the superheat flux 
entering the narrow mushy zone from the liquid pool.  
Next, the problem was rerun using the enhanced 
latent heat method in Abaqus with UMATHT. Here, 
the initial temperature is just above Tliq, thus 
providing no superheat through the temperature 
difference between Tinit and Tliq. Instead, the latent 
heat enhancement needed in Eq. (5) was calculated 
from the superheat flux. A comparison of shell 
thickness (defined by Tref ) between the enhanced 
latent heat method, and the analytical solution is 
shown in Figure 6, both with and without superheat.  
Naturally, solidification is faster with no superheat.  
The new enhanced latent heat method is 
demonstrated to accurately account for superheat in 
transient solidification problems. 

 
 
Figure 6: Shell Thickness History Comparison 
 
Multiphysics Model of Beam Blank  
 
The entire multiphysics model was applied to solve 
for fluid-flow, temperature, stress, and deformation in 
a complex-shaped beam blank caster under realistic 
continuous casting conditions.  Figure 7 is a flow 

chart of the solution strategy for the thermo-
mechanical-fluid flow model of steel continuous 
casting.  First, the thermo-mechanical model of the 
solidifying shell is run assuming a uniform superheat 
distribution driven by the temperature difference 
between Tinit and Tliq, and artificially increasing 
thermal conductivity in the liquid region by 7-fold.  
The heat fluxes leaving the shell surface provide the 
boundary conditions for the thermo-mechanical 
model of the mold, which in turns supplies the next 
run of the shell model with mold temperature and 
thermal distortion boundary conditions.  The position 
of the solidification front in the shell model defines an 
approximate shape of the liquid pool for the fluid flow 
model, which is used to calculate the superheat flux 
distribution.  Finally, an improved thermo-mechanical 
model of solidifying shell is re-run which includes the 
effects of the superheat distribution and mold 
distortion, and completes the first iteration of the 
multiphysics model.  Because the shell profile from 
the improved thermo-mechanical model has little 
effect on superheat results in the liquid pool, a single 
multiphysics iteration is sufficient to produce an 
accurate shell growth prediction. 
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Figure 7: Flow Chart for Multiphysics Solution 
Strategy 
 
The flange pushes on the shell, creating good 
contact and suggesting flange taper is excessive, as 
shown in Figure 8 a).  Small gaps form, but divergent 
2-D heat transfer from the corner produces a thick, 
cold shell in this region.  This contact pressure from 
the middle of the flange causes outward buckling and 
bending of the shell in the shoulder region.  
Furthermore, the shoulder region of the beam-blank 
mold has a convex shape which converges heat flow 
and increases local temperature, opposite to 
behavior at the corners. Heat extraction from the 
shoulder is therefore retarded as shown in Figure 8 
b), producing a thinner shell with higher temperature. 
This causes stress concentration in the shoulder area, 
where the maximum tensile stress and strains are 
observed.  Longitudinal cracks and breakouts are 
often found in this same shoulder region.  The 
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breakout shell obtained from the commercial caster 
pictured in Figure 9 a) was initiated at the thin 
shoulder region [26]. 
 

 
a) 

b) 
 
Figure 8: Beam-Blank Shell Temperature Contours 
and Gaps in a) Flange Region; b) Shoulder Region  
 
Finally, the shell thickness at 90% liquid predicted by 
both models is compared with measurements around 
the perimeter of the breakout shell in Figure 9 c).  
The labels for the positions around the perimeter are 
explained in Figure 9 b). The initial thermo-
mechanical model assuming a uniform superheat 
distribution can only roughly match the shell 
thickness variations.  Shell thickness variations at the 
corners and shoulder due to air gap formations were 
captured owing to the interfacial heat transfer model.  
However, the middle portion of the wide face is 4 mm 
thicker in the measurement.  This is evidently caused 
by the uneven superheat distribution due to the flow 
pattern in the liquid pool, as this location is farthest 
away from the pouring funnels and has the least 
amount of superheat as shown in Figure 5.  In 
contrast, the shoulder region receives the highest 
amount of superheat, so the measured shell 
thickness there is more than 2 mm thinner than the 
initial thermo-mechanical model prediction.  Further 
modelling produced improved taper designs, which 
involved decreasing taper in the flange region (to 

lessen flange pushing), and increasing taper in the 
shoulder region (to lessen gap formation). 
 
The improved multiphysics model that includes the 
fluid flow effects matches the shell thickness 
measurement around the entire perimeter much more 
accurately.  This finding illustrates the improved 
accuracy that is possible by including the effects of 
fluid flow into a thermal stress analysis of solidifying 
shells. 
 

 
a) 

 
b) 
 

 
c) 
 
Figure 9: Solidified Steel Shell Thickness  
a) Breakout Shell; b) location Labels; c) Comparisons 
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Conclusions 
 
This paper illustrates an effective approach for 
accurate multiphysics modeling of commercial 
solidification processes.  The complex multiphysics 
phenomena of continuous casting are uncoupled into 
separate simulations of the molten fluid flow region, 
the mushy zone and solid steel shell region, and the 
mold.  Super-heat fluxes, delivered by turbulent fluid 
flow to the solidification front, are calculated with a 
finite-volume fluid flow model in FLUENT.  A new 
latent-heat method incorporates these results into a 
coupled thermo-mechanical model of the solidifying 
shell using a finite-element model in ABAQUS.  A 
complete finite-element thermal-stress analysis of 
mold thermal distortion is incorporated through a 
second database and boundary condition at the 
shell-mold interface.  The model is demonstrated by 
simulating solidification in a one-quarter transverse 
section of a commercial beam blank caster with 
complex geometry, temperature dependent material 
properties, and realistic operating conditions. The 
results compare well with in-plant measurements of 
the thickness of the solidifying shell from a breakout.  
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